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Abstract. In this paper, we propose the use of Memetics Algorithms for solving 
multiobjective network problems. The aim is to minimize total delay and total 
hop count on sending a multicast flow through a network. We propose a 
heuristic that avoid the creation of subgraphs for finding paths. The heuristic 
combined with multiobjective evolutionary algorithms have shown similar 
results to the results obtained by GAMS solver. The main contribution of this 
paper is the heuristic developed for the problem.  

1   Introduction 

With the increase of applications that use multicast flows, the management of network 
resources has become an important research topic. Researches on multiobjective 
approaches to manage these networks, offers an interesting alternative to integrate 
competitive objectives that are finally reflected on costs and quality of service. 

As several problems with multicast networks have shown to be NP- Complete, 
metaheuristics become an alternative to solve these problems. This paper shows the 
metaheuristic called Memetic Algorithms to the problem of the simultaneous 
optimization of Total Delay and Total Hop count of sending a flow through a 
Multicast Network. 

Memetic algorithms (MA’s) present a paradigm for solving complex problems 
through the combination of heuristics and Evolutionary Algorithms (EA’s).  We 
present on this paper a heuristic that combined with well known Multiobjective 
Evolutionary Algorithms (SPEA2, M – PAES, RD – MOGLS) have shown a similar 
behavior than the results obtained by GAMS solver. The resulting EA’s should be 
called Memetic Algorithms. 
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2   Multiobjective Optimization 

Multiple objective problems can be seen everyday on real life. For instance, when we 
buy at the supermarket, we try to find products that have very good quality but at 
good price. As in real life, in engineering and other areas of knowledge, a variety of 
problems intents to optimize several and competitive objectives. In contrast with 
Simple Objective Optimization, where a solution to a problem is a point, in 
Multiobjective Optimization the solution is a set. This set represents the best solutions 
that optimize simultaneously all objectives, and allow us to decide after the process of 
optimization has been done.  

2.1   Pareto Optimization  

The process of finding one or many solutions that satisfy the constraints and optimize 
simultaneously a set of functions is known as Multiple Objective Optimization.  
Mathematically, this process can be described [1] as 

 
 “Optimize” z = F(x) 

Subject to x ∈ Xf 
 

where F(x) = {f1(x),f2(x),…,fk(x)}, k is the number of functions that are being 
optimized and Xf  is the feasible set. 

In Pareto Optimality, a solution can be dominated, non-dominated and non 
comparable with another solution. A solution y is said to be dominated (strong 
dominance in context of minimization and symbolized as xp y ) by other solution x if 
f(x) < f(y), this is, if a solution x has a better evaluation on all functions than y then y 
is dominated by x.  A solution is said to be non comparable with another solution if 
the solutions are not dominated between themselves, this is if x�  y and y � x. 

Under this approach, the solution of a multiobjective problem is a set. The solutions 
in this set are called Pareto Optimal and the set of these Pareto Optimal solutions is 
called Pareto Set. The image of this set is called Pareto Front. 

2.2   Mathematical Model 

The model presented is an adaptation of the model proposed by Donoso et al. in [2]. 
We minimize in this paper the Total Delay and Total Hop Count on sending a 
multicast flow over a network. The model presented in this paper is static.  

Let G(V,E) a graph that represents the topology of a network. T ⊆ V, T ≠∅, a subset 
that represents the egress nodes and s ∈ V a node in the graph that represents the 
source of the flow. Let cij be the capacity of each link (i,j) and f  ∈ F, be any multicast 
flow, where F is the flow set and Tf  is the egress nodes subset to the multicast flow f. 
Note that  T = U

Ff
fT

∈

.  
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A solution to the problem is the tree P = (p1 ,p2,,p3,…,p|T|) where pt represents a path 
from the node s to the node t, t∈Tf. Therefore, the problem is 
  

Minimize z = {f1(P),f2(P)} (1) 
 

where  

f1(P) =∑∑ ∑
∈ ∈ ∈Ff

t
ij
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ij
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(2) represents the Total Delay, (3) represents the Total Hop Count and 

}1,0{,ZX ft
ij ∈  represents the use of the link (i, j) in the path from s to the egress 

node t (path pt). (4), (5), (6) are the constraints for constructing paths on the graph and 
(7) stands for the bandwidth consumption that cannot exceed the maximum utilization 
per link (a), per link capacity cij. 

3   Related Work 

Multiobjective optimization in multicast networks has been studied by Donoso et al. 
in [2], [5] and [6]. In [6], Donoso et al., propose a multiobjective traffic engineering 
schema using different distribution trees to several multicast flows. They combine 
into a single aggregated metric, the following weighting objectives: the maximum 
link utilization, the hop count, the total bandwidth consumption, and the total end-to-
end delay.  The authors formulate the multiobjective function as one with Non Linear 
programming with discontinuous derivatives (DNLP). Furthermore, a SPT (Shortest 
Path Tree) is proposed for solving the problem and the results of this algorithm are 
compared to the results obtained by SNOPT solver. 

In [7], Banerjee et al., present a genetic algorithm for solving the problem of 
routing and wavelength assignation in optical networks as a single objective problem 
and as a multiobjective optimization problem In the single objective problem, the 
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authors use a cost function based on the frequency of appearance of a link in different 
paths from a source to a destination to assign the fitness of a chromosome.  The 
results for the single objective optimization of the genetic algorithm compared to the 
First-Fit Algorithm showed that with a small source-destination pairs, the results for 
both algorithms are similar, but for big source-destination pairs, the proposed genetic 
algorithm shows a better performance than the First-Fit Algorithm. The results for the 
multiobjective case, shows the capacity of the genetic algorithm to maintain the 
diversity of solutions.  

Applications of multiobjective memetic algorithms on networks have been studied 
by Knowles et al. [8] for minimizing two objectives in telephone networks. Knowles’ 
paper minimizes the cost of total routing (in terms of money per used link) and 
bandwidth consumption. 

 
 

4   Memetic Algorithms 
    
The concept of meme was created by Richard Dawkins in 1976 to explain how culture 
evolves. Dawkins made a parallel between Biological Evolution and Cultural 
Evolution and the result was the concept of meme. Dawkins defines a meme as a unit 
of cultural evolution that needs refinement [3]. A meme represents the way of doing 
things in human culture: the movements on martial arts, the cooking receipts, a way 
for cultivating crops, are example of memes. As result, memes have impact on 
physical reality. In Dawkins’ theory, a meme can be combined with other memes for 
creating new memes, they can be mutated and they can evolve by themselves inside 
the mind of a human being. 

Pablo Moscato in 1989 introduced the concept of Memetics Algorithms in [3], 
where he discusses how to adapt the meme to evolutionary computation. He defines 
that a MA is a marriage between global search made by the evolutionary algorithm 
and the local search (heuristic) made by each of the individuals. In this context, the 
memes are not the solutions of the problem, but the operators of local search that 
contains the cultural information about the problem that is being solved. From the 
figure 1, it can be seen that the difference between a MA and an EA is the 
incorporation of the procedure(s) of local search, for this reason, sometimes MA’s are 
called Hybrid Algorithms. 

 
Memetic Algorithm 
1. generate initial solutions() 
2. while(stop criteria is not met) 
3.   local search() 
4.   calculate fitness() 
5.   selection() 
6.   crossover() 
7.   mutation() 
8. end while 

     End 
Fig. 1. Pseudocode of a Memetic Algorithm 
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Recently, a new approach to Memetic Algorithms was presented by Krasnogor [4] 
where he defines a representation of the local searches called memeplexes. In these 
algorithms, Krasnogor proposes that the local search should evolve with the solutions 
of the problem (individuals). As result, memeplexes can combine between themselves 
and mutate, having a closer approach to the concept proposed by Dawkins.  
    As Memetic Algorithms are the combination of heuristics and evolutionary 
algorithms, the chromosome representation, crossover operator and mutation operator 
must be defined for a problem. The chromosome representation, crossover operator 
and mutation operator will be defined as follows. Local search will be described in 
4.3. 
 
 
4.1 Chromosome Representation 
 
A solution of the problem is a tree that represents the routing of the multicast flow. 
The tree is represented as a set of paths, each one from s to t, t ∈ Tf. The figure 2 
shows the chromosome representation (individual) for a given routing tree.  
 

 
Fig. 2. Chromosome Representation 

 
4.2 Crossover Operator 
 
A Crossover operator is a function that takes a pair of chromosomes and produces a 
new chromosome that inheritates characteristics from its parents. Given two 
chromosomes, the crossover operator used chooses randomly an egress node and then 
it interchanges the path for that egress node between both chromosomes. One of the 
two generated trees is chosen randomly as the resulting chromosome. 
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Fig. 3. Crossover Operator 

 
4.3 Mutation Operator 
 
The mutation operator takes an individual and makes a random change in it for 
creating a new individual. The mutation operator chooses randomly a destination and 
generates a new path using a Deep-First Search (DFS). 
 
4.4 Local Search 
 
Paths for a chromosome in the initial population are generated using a DFS search 
from the source to each destination. By using these randomly generated paths on a 
chromosome, new paths can be constructed by joining paths in intersection nodes; 
however two questions arise by doing this join. The first question is what happens 
when there are more than one intersection nodes and the second is how to generate a 
new path that does not contains loops using these intersection nodes?, for answering 
both questions, the concepts of intersection point and distance of intersection function 
are introduced.  

Let G(V,E) a graph , X, Y a pair of acyclic paths between two nodes of G and x a 
node, x ∈ V. x is said to be an intersection point between X and Y if x∈ X − x∈ Y.  An 
intersection point is denoted as ∠

XYx . The set of intersection points will be denoted as 
IXY.  

Paths are generated by the heuristic choosing the best intersection point between a 
pair of paths inside an individual. For choosing the best intersection point, the 
distance of interception function is defined. 

Let ∠
XYx  be an intersection point of two paths from the same source, PosX( ∠

XYx ) , 

PosY( ∠
XYx ) a function that returns the position of a intersection point on the paths X 

and Y respectively. The distance of intersection function is defined as 
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D( ∠
XYx ) : = abs(PosX( ∠

XYx ) − PosY( ∠
XYx ) ) (7) 

 
where abs(x) stands for the absolute value function. 

Using this function we can choose which interception point will be used to generate 
the join path. The ∠

XYx  chosen is the one that maximizes D( ∠
XYx ) on  the set IXY. If 

there are more than one interception points with the maximum distance, any of these 
can be chosen. If ∀ ∠

XYx ∈ IXY ,D( ∠
XYx ) = 0 then the interception point with maximum 

PosX( ∠
XYx ) is chosen. 

Once the interception point is chosen, the subpaths from the source to each ∠
XYx  in 

the paths X and Y are generated. Let X1 and Y1 be these subpaths. If X1∼ Y1 on the 
delay and hop count functions, the algorithm will not generate a new path. If X1pY1 
then the subpath from ∠

XYx to the destination of the path of Y is generated and let this 
path be Y2. The new path is created by joining the subpaths X1 and Y2 at the chosen 
intersection point. The same happens if Y1 p X1 but this time the new path is created 
by joining Y1 with X2. 

The same algorithm applies between every pair of paths in the chromosome and an 
improved chromosome is obtained after the local search. The figure 4 shows the 
algorithm that generates the new path (heuristic).  

A loop can be seen every time we intercept two paths in the interception points. By 
choosing the interception point with maximum distance, we are identifying the 
biggest loop in the subgraph formed by the two paths. This is the reason why the 
function generates acyclic paths; we are reducing the biggest loop.  

 
Algorithm Path Generator (Path1,Path2) 
1. IPath1Path2 = get interception points (Path1,Path2) 
2. If (IPath1Path2 ≠ ∅) then 
3.      x=select interception point(IPath1Path2) 
4.      Path11= get subpath(source,x,Path1) 
5.      Path21= get subpath(source,x Path2) 

6.     If(Path11 p Path21 in delay and hop count) then 
7          Path22= get subpath (x, target(Path2), Path2) 
8.         Return  Path11 Path22 
9.     Else 

10.        If(Path21 p  Path11 in delay and hop count) then 
11.             Path12= get subpath (x, target(Path1), Path1) 
12.             Return  Path21 Path12 
13.        Else 
14              Return null.  
15.        end If  
16.   End If 
17.Else 
18.       Return null. 
19. End if 

     End 
Fig. 4. Heuristic for the problem 
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