
Optimizing Multiple Objectives on Multicast Networks
using Memetic Algorithms

Yezid Donoso1, Alfredo Pérez1, Carlos Ardila1,
and Ramón Fabregat2

1 Departamento de Ingeniería de Sistemas y Computación
Universidad del Norte

Barranquilla, Colombia
{ydonoso, perezaj, cardila}@uninorte.edu.co

2 Institut d’Informàtica i Aplicacions, Universitat de Girona,
Girona, Spain

ramon@eia.udg.es

Abstract. In this paper, we propose the use of Memetics Algorithms for solving
multiobjective network problems. The aim is to minimize total delay and total
hop count on sending a multicast flow through a network. We propose a
heuristic that avoid the creation of subgraphs for finding paths. The heuristic
combined with multiobjective evolutionary algorithms have shown similar
results to the results obtained by GAMS solver. The main contribution of this
paper is the heuristic developed for the problem.

1 Introduction

With the increase of applications that use multicast flows, the management of network
resources has become an important research topic. Researches on multiobjective
approaches to manage these networks, offers an interesting alternative to integrate
competitive objectives that are finally reflected on costs and quality of service.

As several problems with multicast networks have shown to be NP- Complete,
metaheuristics become an alternative to solve these problems. This paper shows the
metaheuristic called Memetic Algorithms to the problem of the simultaneous
optimization of Total Delay and Total Hop count of sending a flow through a
Multicast Network.

Memetic algorithms (MA’s) present a paradigm for solving complex problems
through the combination of heuristics and Evolutionary Algorithms (EA’s). We
present on this paper a heuristic that combined with well known Multiobjective
Evolutionary Algorithms (SPEA2, M – PAES, RD – MOGLS) have shown a similar
behavior than the results obtained by GAMS solver. The resulting EA’s should be
called Memetic Algorithms.

192 Optimizing Multiple Objectives on Multicast Networks

GESTS-Oct.2005

2 Multiobjective Optimization

Multiple objective problems can be seen everyday on real life. For instance, when we
buy at the supermarket, we try to find products that have very good quality but at
good price. As in real life, in engineering and other areas of knowledge, a variety of
problems intents to optimize several and competitive objectives. In contrast with
Simple Objective Optimization, where a solution to a problem is a point, in
Multiobjective Optimization the solution is a set. This set represents the best solutions
that optimize simultaneously all objectives, and allow us to decide after the process of
optimization has been done.

2.1 Pareto Optimization

The process of finding one or many solutions that satisfy the constraints and optimize
simultaneously a set of functions is known as Multiple Objective Optimization.
Mathematically, this process can be described [1] as

 “Optimize” z = F(x)

Subject to x ∈ Xf

where F(x) = {f1(x),f2(x),…,fk(x)}, k is the number of functions that are being
optimized and Xf is the feasible set.

In Pareto Optimality, a solution can be dominated, non-dominated and non
comparable with another solution. A solution y is said to be dominated (strong
dominance in context of minimization and symbolized as xp y) by other solution x if
f(x) < f(y), this is, if a solution x has a better evaluation on all functions than y then y
is dominated by x. A solution is said to be non comparable with another solution if
the solutions are not dominated between themselves, this is if x� y and y � x.

Under this approach, the solution of a multiobjective problem is a set. The solutions
in this set are called Pareto Optimal and the set of these Pareto Optimal solutions is
called Pareto Set. The image of this set is called Pareto Front.

2.2 Mathematical Model

The model presented is an adaptation of the model proposed by Donoso et al. in [2].
We minimize in this paper the Total Delay and Total Hop Count on sending a
multicast flow over a network. The model presented in this paper is static.

Let G(V,E) a graph that represents the topology of a network. T ⊆ V, T ≠∅, a subset
that represents the egress nodes and s ∈ V a node in the graph that represents the
source of the flow. Let cij be the capacity of each link (i,j) and f ∈ F, be any multicast
flow, where F is the flow set and Tf is the egress nodes subset to the multicast flow f.
Note that T = U

Ff
fT

∈

.

GESTS Int’l Trans. Computer Science and Engr., Vol.20, No.1 193

GESTS-Oct.2005

A solution to the problem is the tree P = (p1 ,p2,,p3,…,p|T|) where pt represents a path
from the node s to the node t, t∈Tf. Therefore, the problem is

Minimize z = {f1(P),f2(P)} (1)

where

f1(P) =∑∑ ∑
∈ ∈ ∈Ff

t
ij

Tt Eji
ij

f

f

Xv
),(

 (2)

f2(P) = ∑∑ ∑
∈ ∈ ∈Ff Tt Eji

t
ij

f

fX
),(

 (3)

subject to

FfsiTtXX f
Eji

t
ji

Eji

t
ij

ff ∈=∈=− ∑∑
∈∈

,,,1
),(),(

 (4)

FfTtXX
Eji

t
ji

Eji

t
ij

ff ∈∈−=− ∑∑
∈∈

,,1
),(),(

 (5)

FftisiTtXX f
Eji

t
ji

Eji

t
ij

ff ∈≠≠∈=− ∑∑
∈∈

,,,,0
),(),(

(6)

EjiaacXbw ji
t

jif
f ∈≥⋅≤⋅∑),(,0,)max(,, (7)

(2) represents the Total Delay, (3) represents the Total Hop Count and

}1,0{,ZX ft
ij ∈ represents the use of the link (i, j) in the path from s to the egress

node t (path pt). (4), (5), (6) are the constraints for constructing paths on the graph and
(7) stands for the bandwidth consumption that cannot exceed the maximum utilization
per link (a), per link capacity cij.

3 Related Work

Multiobjective optimization in multicast networks has been studied by Donoso et al.
in [2], [5] and [6]. In [6], Donoso et al., propose a multiobjective traffic engineering
schema using different distribution trees to several multicast flows. They combine
into a single aggregated metric, the following weighting objectives: the maximum
link utilization, the hop count, the total bandwidth consumption, and the total end-to-
end delay. The authors formulate the multiobjective function as one with Non Linear
programming with discontinuous derivatives (DNLP). Furthermore, a SPT (Shortest
Path Tree) is proposed for solving the problem and the results of this algorithm are
compared to the results obtained by SNOPT solver.

In [7], Banerjee et al., present a genetic algorithm for solving the problem of
routing and wavelength assignation in optical networks as a single objective problem
and as a multiobjective optimization problem In the single objective problem, the

194 Optimizing Multiple Objectives on Multicast Networks

GESTS-Oct.2005

194 Optimizing Multiple Objectives on Multicast Networks

GESTS-Oct.2005

authors use a cost function based on the frequency of appearance of a link in different
paths from a source to a destination to assign the fitness of a chromosome. The
results for the single objective optimization of the genetic algorithm compared to the
First-Fit Algorithm showed that with a small source-destination pairs, the results for
both algorithms are similar, but for big source-destination pairs, the proposed genetic
algorithm shows a better performance than the First-Fit Algorithm. The results for the
multiobjective case, shows the capacity of the genetic algorithm to maintain the
diversity of solutions.

Applications of multiobjective memetic algorithms on networks have been studied
by Knowles et al. [8] for minimizing two objectives in telephone networks. Knowles’
paper minimizes the cost of total routing (in terms of money per used link) and
bandwidth consumption.

4 Memetic Algorithms

The concept of meme was created by Richard Dawkins in 1976 to explain how culture
evolves. Dawkins made a parallel between Biological Evolution and Cultural
Evolution and the result was the concept of meme. Dawkins defines a meme as a unit
of cultural evolution that needs refinement [3]. A meme represents the way of doing
things in human culture: the movements on martial arts, the cooking receipts, a way
for cultivating crops, are example of memes. As result, memes have impact on
physical reality. In Dawkins’ theory, a meme can be combined with other memes for
creating new memes, they can be mutated and they can evolve by themselves inside
the mind of a human being.

Pablo Moscato in 1989 introduced the concept of Memetics Algorithms in [3],
where he discusses how to adapt the meme to evolutionary computation. He defines
that a MA is a marriage between global search made by the evolutionary algorithm
and the local search (heuristic) made by each of the individuals. In this context, the
memes are not the solutions of the problem, but the operators of local search that
contains the cultural information about the problem that is being solved. From the
figure 1, it can be seen that the difference between a MA and an EA is the
incorporation of the procedure(s) of local search, for this reason, sometimes MA’s are
called Hybrid Algorithms.

Memetic Algorithm
1. generate initial solutions()
2. while(stop criteria is not met)
3. local search()
4. calculate fitness()
5. selection()
6. crossover()
7. mutation()
8. end while

 End
Fig. 1. Pseudocode of a Memetic Algorithm

GESTS Int’l Trans. Computer Science and Engr., Vol.20, No.1 195

GESTS-Oct.2005

Recently, a new approach to Memetic Algorithms was presented by Krasnogor [4]
where he defines a representation of the local searches called memeplexes. In these
algorithms, Krasnogor proposes that the local search should evolve with the solutions
of the problem (individuals). As result, memeplexes can combine between themselves
and mutate, having a closer approach to the concept proposed by Dawkins.
 As Memetic Algorithms are the combination of heuristics and evolutionary
algorithms, the chromosome representation, crossover operator and mutation operator
must be defined for a problem. The chromosome representation, crossover operator
and mutation operator will be defined as follows. Local search will be described in
4.3.

4.1 Chromosome Representation

A solution of the problem is a tree that represents the routing of the multicast flow.
The tree is represented as a set of paths, each one from s to t, t ∈ Tf. The figure 2
shows the chromosome representation (individual) for a given routing tree.

Fig. 2. Chromosome Representation

4.2 Crossover Operator

A Crossover operator is a function that takes a pair of chromosomes and produces a
new chromosome that inheritates characteristics from its parents. Given two
chromosomes, the crossover operator used chooses randomly an egress node and then
it interchanges the path for that egress node between both chromosomes. One of the
two generated trees is chosen randomly as the resulting chromosome.

1

3

2

4
5

10

6

7

8

9

12

11

13

0

Chromosome

0 3 10 12

Node

0 2 7 13

 Path

196 Optimizing Multiple Objectives on Multicast Networks

GESTS-Oct.2005

Fig. 3. Crossover Operator

4.3 Mutation Operator

The mutation operator takes an individual and makes a random change in it for
creating a new individual. The mutation operator chooses randomly a destination and
generates a new path using a Deep-First Search (DFS).

4.4 Local Search

Paths for a chromosome in the initial population are generated using a DFS search
from the source to each destination. By using these randomly generated paths on a
chromosome, new paths can be constructed by joining paths in intersection nodes;
however two questions arise by doing this join. The first question is what happens
when there are more than one intersection nodes and the second is how to generate a
new path that does not contains loops using these intersection nodes?, for answering
both questions, the concepts of intersection point and distance of intersection function
are introduced.

Let G(V,E) a graph , X, Y a pair of acyclic paths between two nodes of G and x a
node, x ∈ V. x is said to be an intersection point between X and Y if x∈ X − x∈ Y. An
intersection point is denoted as ∠

XYx . The set of intersection points will be denoted as
IXY.

Paths are generated by the heuristic choosing the best intersection point between a
pair of paths inside an individual. For choosing the best intersection point, the
distance of interception function is defined.

Let ∠
XYx be an intersection point of two paths from the same source, PosX(∠

XYx) ,

PosY(∠
XYx) a function that returns the position of a intersection point on the paths X

and Y respectively. The distance of intersection function is defined as

GESTS Int’l Trans. Computer Science and Engr., Vol.20, No.1 197

GESTS-Oct.2005

D(∠
XYx) : = abs(PosX(∠

XYx) − PosY(∠
XYx)) (7)

where abs(x) stands for the absolute value function.

Using this function we can choose which interception point will be used to generate
the join path. The ∠

XYx chosen is the one that maximizes D(∠
XYx) on the set IXY. If

there are more than one interception points with the maximum distance, any of these
can be chosen. If ∀ ∠

XYx ∈ IXY ,D(∠
XYx) = 0 then the interception point with maximum

PosX(∠
XYx) is chosen.

Once the interception point is chosen, the subpaths from the source to each ∠
XYx in

the paths X and Y are generated. Let X1 and Y1 be these subpaths. If X1∼ Y1 on the
delay and hop count functions, the algorithm will not generate a new path. If X1pY1
then the subpath from ∠

XYx to the destination of the path of Y is generated and let this
path be Y2. The new path is created by joining the subpaths X1 and Y2 at the chosen
intersection point. The same happens if Y1 p X1 but this time the new path is created
by joining Y1 with X2.

The same algorithm applies between every pair of paths in the chromosome and an
improved chromosome is obtained after the local search. The figure 4 shows the
algorithm that generates the new path (heuristic).

A loop can be seen every time we intercept two paths in the interception points. By
choosing the interception point with maximum distance, we are identifying the
biggest loop in the subgraph formed by the two paths. This is the reason why the
function generates acyclic paths; we are reducing the biggest loop.

Algorithm Path Generator (Path1,Path2)
1. IPath1Path2 = get interception points (Path1,Path2)
2. If (IPath1Path2 ≠ ∅) then
3. x=select interception point(IPath1Path2)
4. Path11= get subpath(source,x,Path1)
5. Path21= get subpath(source,x Path2)

6. If(Path11 p Path21 in delay and hop count) then
7 Path22= get subpath (x, target(Path2), Path2)
8. Return Path11 Path22
9. Else

10. If(Path21 p Path11 in delay and hop count) then
11. Path12= get subpath (x, target(Path1), Path1)
12. Return Path21 Path12
13. Else
14 Return null.
15. end If
16. End If
17.Else
18. Return null.
19. End if

 End
Fig. 4. Heuristic for the problem

198 Optimizing Multiple Objectives on Multicast Networks

GESTS-Oct.2005

